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NONUNIFORMITY OF THE VELOCITY FIELD OF A FLUX PASSING THROUGH A PACKED 

BED 

M. A. Gol'dshtik, A. M. Vaisman, 
A. V. Lebedev, and M. Kh. Pravdina 

UDC 532.546.2 

It is experimentally and theoretically shown that the sharp nonuniformity of 
the velocity at the outlet from a packed bed develops outside the bed as the 
flow passes through a curvilinear boundary. 

The strongly pronounced nonlocalized velocity nonuniformity in a flow emerging from a 
packed bed has been investigated experimentally [1-5] and theoretically [4, 6-8] for a per- 
iod of more than over 20 years. However, complete clarity with regard to the character and 
nature of this phenomenon has not yet been achieved. Experiments indicate that the nonuni- 
formity scale is more likely connected with the channel dimensions than with the bead dia- 
meter. Theoretical investigations are based on the assumption that the velocity nonuniform- 
ity develops within the packed bed due to changes in its porosity, caused by repacking or 
deformations. For all the diversity of the deformation models used, the interaction between 
the bed and the channel walls plays the central role. An alternative approach is based on 
the possibility that the deflection of the supporting grid may be the cause of velocity non- 
uniformity [5]. This possibility has not been investigated to a sufficient extent. There- 
fore, we have performed experiments in order to compare the effect of the walls with that 

of the supporting grid. 

The device for blowing air through a bed of beads (Fig. la) makes it possible to vary 
the deflection of the supporting grid and also introduce an additional wall, not connected 
to the grid, in the middle of the channel (Fig. lb). The device consists of a vertical, 
rectangular channel with a 120 x 60 mm cross section, which has three parts: the supply sec- 
tion 5, the operating section 6, and the outlet channel 7. The endfaces of the channel 
sections have flanges with rubber gaskets providing an airtight seal. Air is supplied to 
the channel from the main at pressures of up to 8 atm through branch pipe I and is then 
transmitted through swirler 2 and equalizer 3. In spite of its small dimensions, this in- 
let arrangement ensures relatively good equalization of the air flow ahead of the bead bed 
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Fig. i. Schematic of the experimental de- 
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Fig. 2. Velocity profile at outlet from 
the bed of beads [v (m/see); x (cm)]. 
a) Freely sagging grid; b) grid supported 
by cross brace; c) separating wall pro- 
vided in the middle of the channel. 

13. Connection between the equalizing device and the main channel is provided by section 
4, which consists of a tube with a diameter of 114 mm that passes into a rectangular duct 
with a 120 x 60 mm cross section. Sealing grommets 8 for inserting the hot-wlre anemo- 
meter sensing element i0 are provided in the walls of the supply and outlet channels. The 
operating section has fastenings for grids and the dividing wall 9. In order to reduce the 
deflection of grid 12 under the weight of particles, a support ii is provided in the form 
of a cross brace, which is fastened by means of screws in the outlet channel walls and is in 
direct contact with the load-free lower grid. 

The basic experimental results are shown in Fig. 2. Metal beads with the diameter d = 
2.6 mm served as the granular mmterial. They were poured onto a stainless-steel grid with 
0.65 mm mesh. Curve i pertains to the grid with free deflection. It displays the typical 
pattern of "ears" with the ratio Vmax/Vmi n = 5. When the taut load-free grid was supported 
from below by the cross brace, which divided the grid into four equal parts, as a result of 
which the grid deflection was reduced by a factor of 16 for the same load, the flow pattern 
changed drastically: Curve 2 displayed a local nonuniformity with an extent of about 3d at 
the wall. The above ratio amounted to Vmax/Vmin = 1.4. Curve 3 illustrates the effect of 
a separating wall with a thickness of 18 mm, placed at the middle of the channel. Such a 
large thickness was necessary for preventing the mutual interference of the flows to the 
right and to the left of the plate. Measurements were performed at a distance of i0 mm be- 
low the grid, where microscopic velocity nonuniformities were smoothed out to a considerable 
extent. The region of distances from 5.1 to 6 cm corresponds to the wind shadow caused by 
the insert. It is evident that the flow is virtually unchanged in comparison with the first 
case over the greater part of the cross section. Local "ears" with Vmax/Vmin = 1.4 are ob- 
served near the separating wall. 

These data suggest that the wall presence manifests itself only in slight local velo- 
city nonuniformity, which is related to changes in the packing of beads near the wall. The 
considerable macroscopic nonuniformities beyond the packed bed are caused by the deflection 
of the supporting grid. However, this may be accompanied by two factors: First, the deflec- 
tion promotes deformation of the bed and, second, it alters the geometry of the flow as it 
emerges from the bed. 

Let us separate the first effect. One of the factors causing deformmtion of the packed 
bed is the force exerted by the infiltrating flow. The developing deformation, in turn, al- 
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ters the local porosity and redistributes the flow, which nmy produce hydrodynamic nonuni- 
formities, which are the greater, the larger the allowable bed deformations. Quantitative 
data can be obtained by solving simultaneously the hydrodynamic and the deformation equa- 
tions, which lead to the following problem. 

Steady-state filtration through a bed of beads lying on an elastic grid is considered. 

The bed resistance ~ is determined by means of the K~rmdn--Conseni equation. The fil- 
tration problem is stated in the form of the equations 

! ~ 1 5 0 ~  (1 - -  ~)~ 
v gradp,  d ivv==O,  ~ =: 

s0 ~3d~ (i) 

Assume that a two-dimensional incompressible flow moves vertically along the y axis through 
a bed whose thickness is H and half-width is h = i. 

Elimination of the velocity in (i) results in an elliptic equation for p: 

a ; Op +_ a i a ,  __0. (2) 
ax ~ Ox 09 ~ 09 

Strictly speaking, it would have been necessary to state the problem in terms of a combina- 
tion of filtration flow and free flow (Eq. (2) would then be inadequate by itself), but this 
would represent a major complication. Therefore, we shall assign approximate conditions at 
the bed boundaries. Assume that Vy = const = 1 is assigned at the inlet, and p = const at 
the outlet. Considering the flow symmetry with respect to the x = 0 axis and the imperme- 
ability of the walls, we have the following boundary conditions: 

Op i = 0 .  Op y=O . . . .  ~P' pt,~=n = 0 ,  - & x  ~=o:,l ay 

In order to calculate the stressed state, we use the theory of limiting deformation of a 
granular medium [7], the equations for which are written in the following form: 

#uj ! Ou~ -- O, (3)  Opg + 2~ ~ ~ j  _!_ F~ = O, ~'~J - - 2  \ Ox; Ox~ Oxj 
w h e r e  u i i s  t h e  d i s p l a c e m e n t  v e c t o r ,  p3 i s  t h e  p r e s s u r e  w i t h i n  t h e  g r a n u l a r  medium,  F i = 
3p/3x i are the components of the mass force vector, and ~ is a constant, which has the order 
of unity. The relationship between the porosity E of the bed and the shearing strain in it 

is provided by the expression 

I 
= (~o + 297~)/( 1 q 2~? ~) ~ eoq--2~ (1 --eo)%'~, 72 = --~- ?iJ?iJ- (4) 

The value of r represents the initial porosity distribution in the absence of shear. 

Expressions (1)-(3) constitute a closed system of equations. By using the notation 

~Yij § Yij and ~u i + u i, we find from (3) 

_ Opg _i_20p~?~,_~_ 2 #pg ?~ _.L~u~q_F~=O, 
Ox Og " ' Ox 

�9 O p g _ - ~ 2  Op ~ , 
- -  Oy Ox ~?x~,-i-2 o p ~ , u u  l - ~ & 9  i F, : .~O.  og 

Subsequent transformations are carried out with an accuracy to second-order small quantities 
with respect to y with an allowance for the fact that, for u = 0 and r = const, ~pg/3X = 0 

and 3pg/3y = const. We have 

O~-~-.2.0Pg ~.,.~q-~Atl~-t-F~=O, 
Ox ~ Oy 

_ _  Opg _{_ 2 Opg y,~-i-pgAu~, I F , = O .  (5) 
Og Og 

Applying the rot (curl) operation to (5), we eliminate the force F: 

Opgog A u ~ - - 2  O P g / O ? Y ~ ~ 1 7 6  = O ' O g  ',40x O!./ , i pgA - Oy" Ox 

We introduce new variables -- the stream function qJ and the vorticity ~ -- in accordance with 

the relationships u x = 3@/3y, Uy = --3~/3x, and c~ = 3Uy/3X -- 3Ux/3y; 
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v,J~s = 0~ '4-  ! ( a-'r a~-,,b '] 
...... a-~i-asl' >"~'" Y t azi"- &',-,!' 

o:~j , Oaq; 0o~ 
Aux. 

@a O.v 2 Off @ 

2 dz @ ) := - -  2 ' + . . . .  , - , ?J,'d@ axe@ @a Oil 09 

W i t h  t h e s e  t r a n s f o r m a t i o n s ,  we o b t a i n  t h e  e l l i p t i c  s y s t e m  

A~b --o), 2.0pg &:o 
O~f &j -{- f~ao, := O, (6 )  

w h i c h  m u s t  b e  s u p p l e m e n t e d  w i t h  t h e  p r e s s u r e  e q u a t i o n ,  u s i n g ,  f o r  i n s t a n c e ,  t h e  s e c o n d  e q u a -  
t i o n  in (5). 

We shall consider the boundary conditions separately for each boundary. The y = 0 
boundary is free, so that P3 = 0 at this boundary. We thereby obtain the Cauchy problem for 
pressure. For y = 0, we obtain the following from the first equation in (5): 

Opg- ( Ox ~ 0 ~  ) @ Fx = ~ 

o r  

. . . .  m-- �9 (7) 
Ox ~ 2 OpglOY 

A c c o r d i n g  t o  t h e  s e c o n d  e q u a t i o n  i n  ( 6 ) ,  

Oo)lOy = 0 for  y = 0. (8 )  

The following conditions are imposed at the symmetry axis x = 0: 

~ = 0 ,  ~ = 0 .  (9) 

We impose the condition for the absence of transverse displacements at the boundary y = H; 

a r  = o. 0 . o )  

The equation for a sagging grid is written in the following form [9]: 

aTuy = 02ttu (ii) 

OXz ' 

0 ~  = --pg in view of condition (i0). Since Uy = where Tyy = --pg + 2pgyyy = --pg -- 2pg 0xay 

--3~/~x, we find from (Ii) 

--  ap  g, 02~ _ a i 
Oa~ 
OX------ 7 OX ~ . .  pgdx 

0 

o r  

o~ = 0~* a f pgdx. (12) 
Oy ~ 

0 

The coefficient a is connected with the elasticity of the grid. In particular, if a = 0, 
the grid can be considered as absolutely rigid, and the boundary condition (12) signifies 
impermeability Of the boundary, since it follows from this condition that ~2~/3x2 = 0 and 

Uy = const. 

Consider the conditions at the wall, x = i. It follows from the wall impermeability 

requirement that 

~ = 0 .  (13) 

Moreover, if we seek a continuous solution, we must consider that conditions (7), (i0), and 
(12) have already been imposed at the ends of this boundary. The equation 3ag/3x = = -~ fol- 
lows from (13); on the other hand, since 3p/3x = 0 for x = i, it follows from (7) that 
3a@/3x 2 = --~/2, so that ~(i, 0) = 0. Furthermore, in accordance with (I0) and (12), 
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Fig. 3. Calculation results, i), 2), and 3) Velocity 
profiles in the deformed bed corresponding to 1/2, 1/4, 
and 1/6 sections; 4) shape of the deformed grid. 

Fig. 4. Flow through an undeformable porous insert with 
a curvilinear boundary; approximate calculations and 
experimental data. 

! 

0 ~  (1, H ) = 0 ,  re(l, H)=--a fpgdx. (14) 
8y . 

0 

I f  we now impose  t h e  s t i c k i n g  o r  s l i p p a g e  c o n d i t i o n s  a t  t h e  b o u n d a r y ,  t h e  p r o b l e m  b e -  
comes o v e r d e t e r r ~ n e d .  T h i s  means t h a t  i t  i s  n e c e s s a r y  e i t h e r  t o  r e l i n q u i s h  t h e  c o n d i t i o n s  
f o r  t h e  c o n t i n u i t y  o f  t h e  s o l u t i o n  o f  (14) or  t a k e  i n t o  a c c o u n t  t h e  i n t e r a c t i o n  b e t w e e n  t h e  
bed  and t h e  w a i l  and d e t e r m i n e  t h e  s t i c k i n g  and s l i p p a g e  r e g i o n s  by a n a l y z i n g  t h e  f r i c t i o n  
f o r c e s .  However ,  s i n c e  t h i s  i n t e r a c t i o n  c a n n o t  t a k e  p l a c e  a t  a p o i n t  s u f f i c i e n t l y  r e m o t e  
f r o m  t h e  w a i l ,  and we a r e  i n t e r e s t e d  m o s t l y  i n  m a c r o s c o p i c  n o n u n i f o r m i t i e s ,  we s h a l l  s a t i s f y  
r e q u i r e m e n t s  (14) by  u s i n g  t h e  c o n d i t i o n  

I 

0 

In the case of a rigid grid, a = 0, so that, according to (15), 

~=0. (16) 

Condition (16) corresponds to the slippage condition Yxy = 0. 

This nonlinear problem was solved by using the iteration method. At the first stage, 
the hydrodynamic problem was solved for the known porosity of the bed. We then calculated 
the resistance forces, solved the deformation problem, and calculated the new nonuniformity. 

The process was then repeated until convergence was achieved. All the elliptic equa- 
tions were solved by using the method of longitudinal and transverse trial runs [9]. A 
three-dimensional i0 • 20 grid was used. The longitudinal dimension amounted to one-fourth 
of the channel width. 

In investigating the effect of the grid's deflection on bed deformation, the initial 
porosity distribution was assumed to be uniform: to = 0.37. The grid deflection was varied 
by changing the a parameter. Figure 3 shows the velocity profiles Vy(X) in several bed 
sections for the deflection A = 0.15 and the shape of the deformed grid. Table i provides 
data from three calculation variants for different grid deflections. The thus produced 
velocity nonuniformlty is undoubtedly macroscopic, but the effect is weak. A more or less 
significant value of the vymaX/vy min ratio corresponds to the huge deflection A = 0.21. 
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TABLE 1. Calculation Results for a Flow 
Interacting with a Deformable Granular 
Medium 

Grid de- 
flection 
A 

0.15 
0,18 
0,21 

1 
vmax/ [ vydx t.t./ 1,. 

0 

1,25 
I, 33 
1,44 

max rain 
Y /vy 

1,29 
1,38 
1,54 

Enlax 

0,40 
0,41 
0,43 

In connection with this, it is of interest to examine the second effect, which is a 
purely geometric one and is connected with emergence of the flow from the bed through a 
curvilinear boundary. Assume that the flow in a channel whose width is 2h emerges from a 
porous medium whose shape is shown in the lower part of Fig. 4, where OY is the symmetry 
axis. Assume that the OA boundary is, for instance, a parabola, 

Y ~ - - ~ X  ~. (17) 

At the point A, the flow is directed along the wall, so that the tangential component of 
velocity V does not vanish. For the tangential and the normal components within the layer, 
we have 

v ~ = V s i n ~ ,  v ~ = V c o s %  

while tg~ = y' = --2~h. We shall furthermore use the conditions for joining the flows out- 
side and inside the bed that have been introduced in [i0]. According to these conditions, 
the vorticity 

-- tg ~ = -- ~y'/~ (18) 
E V n g 

arises at the point A. It is difficult to solve the problem on the basis of the exact state- 
ment; this can be done only numerically. Therefore, considering that the grid deflection 
AB = A is small (A/h << i), let us assume that the outlet flow is parallel to the y axis over 
the entire section OA. This assumption is certainly wrong. Actually, a singularity must 
arise at the point A, since, on the one hand, the flow must change direction as it encounters 
the interface at an angle different from zero, and, on the other hand, its direction at the 
wall is assigned. At other points of the boundary, the tendency of the flow would be to de- 
velop along the normal to OA, following the path of least resistance. However, all these 
local nonuniformities are smoothed out exponentially downstream, so that, for y + ~, only 
vortex nonuniformities remain in the flow. Therefore, we take into account the boundary 
curvature only in calculating the vorticity while the other conjugation conditions are satis- 
fied by assuming that the boundary is flat. In other words, we assume that relationship (18) 
holds not only at the point A, but also everywhere on OA, so that 

= 2 ~ x / 8 .  (19) 

Moreover, the liquid velocity is to be considered constant and equal to V everywhere in the 
bed, including the OA surface. Thus, we contemplate the case where nonuniformity arises 
only beyond the bed as a result of vortex formation at the curvilinear boundary. 

Two-dimensional vortex flow of an ideal liquid conforms to the equations [II] 

A ~ = - - ~ ,  v ~ = O ~ / O y ,  v ~ = - - O ~ / O x ,  ~ = ~ ( ~ ) .  ( 20 )  

The function w = ~(~) is found from the boundary conditions at inlet sections, in this case, 
at OA. According to (20), we have ~ = --aVx with an allowance for the flow symmetry with 
respect to the y axis. Then, we find from (19) that ~) = --2~/(s and the first equation 
in (20) assumes the following form: 

- -  -- k ~ .  (21) 
Ox ~ § 092 

A l l  t h e  v a r i a b l e s  a r e  g i v e n  h e r e  i n  d i m e n s i o n l e s s  f o r m ;  t h e  h a l f - w i d t h  o f  t h e  c h a n n e l  h i s  
u s e d  a s  t h e  l e n g t h  s c a l e ,  and  t h e  mean v e l o c i t y  b e y o n d  t h e  b e d  iV i s  u s e d  a s  t h e  v e l o c i t y  
scale. The value of k, which is the basic parameter of the problem, is determined by the 

relationship 
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h . / /  2a~ 
(22)  

The sought function ~ must satisfy the conditions 

%=o = o, % - ,  = -  '%=0 . . . . . . . . .  

The solution of the problem (21), (23), bounded for y § ~, is given by 

(23) 

sh kx (-- I )  '~ 
- + 2k 2 ~ j  sh k ~--- n n  (k 2 + n~n 2) sin nzx  exp ( 9 F k  ~ + n~n~). (24)  

Expression (24) makes it possible to estimate the error due to the assumption of a parallel 
flow in the bed. For this, it is necessary to calculate the value of v x for y = 0: 

vxly=o = 2k 2 ' ~  (-- l)n+J sinn~x. (25) 
n~ (k ~ + n2~ ~) 

A c c o r d i n g  t o  ( 2 5 ) ,  v x = 0 f o r  x = 0 and  x = 1;  t h e  maximum v a l u e  o f  v x o c c u r s  f o r  x = 112.  
However ,  c a l c u l a t i o n s  show t h a t ,  e v e n  i n  t h i s  c a s e ,  t h e  sum i n  (25)  i s  r a t h e r  s m a l l  due  to  
the alternating signs in the series and is a decreasing function of k. Thus, for k = i, 
this sum amounts to 0.09. Therefore, for sufficiently small k values, the v x values are 
small, and the initial assumption concerning the parallelness of the flow in the bed is 
justified. With an increase in k, the matching of the tangential velocities at the inter- 
face deteriorates, so that we must seek the solution of the conjugate problem, which is very 
complex due to its nonlinearity. Therefore, with good-quality results in mind, we shall 
accept solution (24) and consider it as a model solution for large k values, which, in prin- 
ciple, can be realized by choosing the velocity distribution at the inlet to a finite-thick- 
ness bed. 

The second term in (24) is rapidly damped with respect to y, especially for large k 
values. However, even for k = 0, the damping is determined by the exponential function 
e-~Y, which ensures reduction of the sum by a factor of 23 at the half-gauge distance y = i 

from the inlet~ 

Therefore, for practical purposes, it is sufficient to consider the asymptotic solution, 
represented by the first term in (24), which reflects the vortex nonuniformities persisting 

throughout the flow. Thus, we have 

=- - -  sh kx/sh k. (26) 

We calculate the velocity Vy = v in accordance with (20): 

v - k ch kx/~h k. (27) 

The value of v represents the longitudinal flow velocity, reduced to the mean velocity. 
Therefore, v = i for k = 0. The larger the value of k, the more pronounced the flow nonuni- 

formity, while 

v ( l ) : = k c t h k - - * o o ,  v ( O ) : : : k / s h k - + O  for k - + o o .  

The above relationshipscharacterize this as a nonlocalized nonuniformity, which is also 
evident from Fig. 4, the upper part of which shows the v(x) profile for k = 5.79. Thus, 
according to these results, large-scale nonuniformities beyond the packed bed can be ex- 
plained by purely geometric causes. In order to check this assumption, we carried out a 
special experiment where, instead of the bead packing, the operating section was filled with 
an undeformable porous insert with a thickness of ii mm and a curvilinear boundary in the 
shape of a parabola, y = (x-- 60) 2/900, where x and y are given in millimeters. The deflec- 
tion is equal to Xh a = 4 mm for h = 60 mm. The value of a in experiments was determined with 
respect to the pressure drop and the discharge; it was found that k = 5.79. The experimental 
data in dimensionless form are indicated by points in Fig. 4. Control measurements on a 
similar insert with a flat boundary resulted in a uniform velocity profile. The agreement 

is evidently fairly good. 

Thus, it has been established that even slight geometric factors cause large macrosco- 
pic flow nonuniformities beyond the bed; however, they are not hazardous for the equipment. 
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NOTATION 

d, bead diameter; V, v, flow velocity; Vma x and Vmin, maximum and minimum velocity 
values, respectively; Vx, Vy, v T, and Vn, horizontal, vertical, tangential, and normal 
components of the velocity, respectively; x and y, coordinates; p, liquid density; e, bed 
porosity; v, viscosity; p, hydrodynamic pressure; ~, resistance coefficient; pg, pressure 
in the deformable granular medium; ~, constant; ui, displacements; Yij, deformation; ~, ~, 
stream function; w, vorticity; H, bed height; h, half width of bed; I and k, parameters. 
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MODEL FOR CALCULATING THE ROTATIONAL FLOW PARAMETERS OF A TWO-PHASE 

MEDIUM WITH ALLOWANCE FOR PHASE INTERACTION 

E. F. Shurgal'skii UDC 532.5:533.6.011 

A method is proposed for solving the problem of the rotational flow parameters 
of a two-phase dusty-gas medium in a cylindrical channel. The effect of the 
solid particles on the carrier flow is demonstrated numerically. 

Apparatus using the cyclone effect make it possible to intensify considerably and qual- 
itatively imporve such processes as heat and mass transfer, separation, mixing, and dust 
collecting. In order todesign this apparatus and calculate the operating regimes it is 
necessary to have data on the hydrodynamic flow parameters of the two-phase medium. 

In apparatus with swirling flows the centrifugal forces affect not only the distribu- 
tion of solid-phase concentration over the cross section [I] but also, what is more impor- 
tant, the aerodynamic characteristics of the carrier gas. 

Below we consider a mathematical model and methods of solution applicable to apparatus 
intended for processing dusty gases. As an example we will take a dust catcher with swirl- 
ing counterflows (Fig. i). 
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